Master theorem

3 Bachman-Landau notation

Bachman-Landau family of notations is the name of a few closely related notations used in algorithm analysis. The most famous of them is the so-called big-O notation. While most formulations are defined on functions from naturals or reals to reals, we define them more generally - requirements for the types of the domain and codomain vary between different properties. However, all properties hold for functions from a linearly ordered commutative ring to a linearly ordered field. In the rest of this page, we let \(R\) be a linearly ordered commutative ring and \(F\) be a linearly ordered field. We will also use symbols \(f\), \(f\_ 1\), \(f\_ 2\), \(g\), \(g\_ 1\) and \(g\_ 2\) for functions \(R \to F\). Also, we let \(M\) be a right \(R\)-module, although often only a (distributive) left multiplicative action on \(R\) is required.

3.1 Asymptotic sets

Definition 72
#

(Big O notation) \(f(x) \in O(g(x))\) if it is asymptotically bounded above by \(g(x)\).

Definition 73
#

(Big Omega notation) \(f(x) \in \Omega (g(x))\) if it is asymptotically bounded below by \(g(x)\).

Definition 74
#

(Big Theta notation) \(f(x) \in \Theta (g(x))\) if it is asymptotically bounded by \(g(x)\).

Definition 75
#

(Small O notation) \(f(x) \in o(g(x))\) if it is asymptotically dominated by \(g(x)\).

Definition 76
#

(Small Omega notation) \(f(x) \in \omega (g(x))\) if it asymptotically dominates \(g(x)\).

3.2 Relations between asymptotic sets

Lemma 77
#

If \(f(x) \in o(g(x))\), then \(f(x) \in O(f(x))\).

Proof

Since \(o(g(x))\) and \(O(f(x))\), we can simply use Lemma 35.

Theorem 78
#

If \(f(x) \in \omega (g(x))\), then \(f(x) \in \Omega (g(x))\).

Proof

The proof is a simple application of Theorem 36.

Theorem 79

\(f(x) \in O(g(x))\) and \(f(x) \in \Omega (g(x))\) if and only if \(f(x) \in \Theta (g(x))\).

Proof

Similarly to previous proofs, the proof is a direct application of Lemma 37.

Lemma 80
#

Let \(g\) be asymptotically positive. Then \(f(x) \in \Theta (g(x))\) and \(f(x) \in o(g(x))\) are not both true.

Proof

A direct application of Lemma 38.

Lemma 81
#

Let \(g\) be asymptotically positive. If \(f(x) \in \Theta (g(x))\) then \(f(x) \notin o(g(x))\).

Proof

A direct application of Lemma 80.

Lemma 82
#

Let \(g\) be asymptotically positive. If \(f(x) \in o(g(x))\) then \(f(x) \notin \Theta (g(x))\).

Proof

A direct application of Lemma 80.

Lemma 83
#

Let \(g\) be asymptotically positive. If \(f(x) \in \Omega (g(x))\) then \(f(x) \notin o(g(x))\).

Proof

A direct application of Lemma 39.

Lemma 84
#

Let \(g\) be asymptotically positive. If \(f(x) \in o(g(x))\) then \(f(x) \notin \Omega (g(x))\).

Proof

A direct application of Lemma 40.

Lemma 85
#

Let \(g\) be asymptotically positive. Then \(f(x) \in \Theta (g(x))\) and \(f(x) \in \omega (g(x))\) are not both true.

Proof

A direct application of Lemma 41.

Lemma 86
#

Let \(g\) be asymptotically positive. If \(f(x) \in \Theta (g(x))\) then \(f(x) \notin \omega (g(x))\).

Proof

A direct application of Lemma 85.

Lemma 87
#

Let \(g\) be asymptotically positive. If \(f(x) \in \omega (g(x))\) then \(f(x) \notin \Theta (g(x))\).

Proof

A direct application of Lemma 85.

Lemma 88
#

Let \(g\) be asymptotically positive. Then \(f(x) \in o(g(x))\) and \(f(x) \in \omega (g(x))\) are not both true.

Proof

A direct application of Lemma 44.

Lemma 89
#

Let \(g\) be asymptotically positive. If \(f(x) \in o(g(x))\) then \(f(x) \notin \omega (g(x))\).

Proof

A direct application of Lemma 88.

Lemma 90
#

Let \(g\) be asymptotically positive. If \(f(x) \in o(g(x))\) then \(f(x) \notin \omega (g(x))\).

Proof

A direct application of Lemma 88.

3.3 Reflexivity

Lemma 91
#

\(f(x) \in \Theta (f(x))\).

Proof

Direct consequence of Lemma 47.

Lemma 92
#

\(f(x) \in O(f(x))\).

Proof

This follows directly from Lemma 48.

Lemma 93
#

\(f(x) \in \Omega (f(x))\).

Proof

This follows directly from Lemma 49.

3.4 Transitivity

Lemma 94
#

If \(f(x) \in O(g(x))\) and \(g(x) \in O(h(x))\), then \(f(x) \in O(h(x))\).

Proof

This follows directly from Lemma 50.

Lemma 95
#

If \(f(x) \in \Omega (g(x))\) and \(g(x) \in \Omega (h(x))\), then \(f(x) \in \Omega (h(x))\).

Proof

This follows directly from Lemma 51.

Lemma 96
#

If \(f(x) \in \Theta (g(x))\) and \(g(x) \in \Theta (h(x))\), then \(f(x) \in \Theta (h(x))\).

Proof

This follows directly from Lemma 52.

Lemma 97
#

If \(f(x) \in o(g(x))\) and \(g(x) \in o(h(x))\), then \(f(x) \in o(h(x))\).

Proof

This follows directly from Lemma 53.

Lemma 98
#

If \(f(x) \in \omega (g(x))\) and \(g(x) \in \omega (h(x))\), then \(f(x) \in \omega (h(x))\).

Proof

This follows directly from Lemma 54.

3.5 Scalar multiplicativity

Lemma 99
#

Let \(c {\gt} 0\). If \(f(x) \in O(g(x))\), then \(c \cdot f(x) \in O(g(x))\).

Proof

This follows directly from Lemma 55.

Lemma 100
#

Let \(c {\gt} 0\). If \(f(x) \in \Omega (g(x))\), then \(c \cdot f(x) \in \Omega (g(x))\) is also bounded below by \(g\).

Proof

This follows directly from Lemma 56.

Lemma 101
#

Let \(c {\gt} 0\). If \(f(x) \in \Theta (g(x))\), then \(c \cdot f(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 57.

Lemma 102
#

Let \(c {\lt} 0\). If \(f(x) \in O(g(x))\), then \(c \cdot f(x) \in O(-g(x))\).

Proof

This follows directly from Lemma 58.

Lemma 103
#

Let \(c {\lt} 0\). If \(f \in \Omega (g(x))\), then \(c \cdot f(x) \in \Omega (-g(x))\).

Proof

This follows directly from Lemma 59.

Lemma 104
#

Let \(c {\lt} 0\). If \(f(x) \in \Theta (g(x))\), then \(c \cdot f \in \Theta (-g(x))\).

Proof

This follows directly from Lemma 60.

3.6 Additivity

Lemma 105
#

Let \(f\_ 1(x), f\_ 2(x) \in O(g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in O(g(x))\).

Proof

This follows directly from Lemma 61.

Lemma 106
#

Let \(f\_ 1(x), f\_ 2(x) \in \Omega (g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in \Omega (g(x))\).

Proof

This follows directly from Lemma 62.

Lemma 107
#

Let \(f\_ 1(x), f\_ 2(x) \in \Theta (g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 63.

Lemma 108
#

Let \(f\_ 1(x) \in \Omega (g(x))\) and let \(f\_ 2\) be asymptotically positive. Then \(f\_ 1(x) + f\_ 2(x) \in \Omega (g(x))\).

Proof

This follows directly from Lemma 64.

Lemma 109
#

Let \(f\_ 1(x) \in O(g(x))\) and let \(f\_ 2\) be asymptotically negative. Then \(f\_ 1(x) + f\_ 2(x) \in O(g(x))\).

Proof

This follows directly from Lemma 65.

Lemma 110

Let \(f\_ 1(x) \in \Theta (g(x))\). Let also \(f\_ 2\) be asymptotically positive and \(f\_ 2(x) \in O(g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 66.

Lemma 111

Let \(f\_ 1(x) \in \Theta (g(x))\). Let also \(f\_ 2\) be asymptotically negative and \(f\_ 2(x) \in \Omega (g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 67.

Lemma 112

Let \(f\_ 1(x) \in \Theta (g(x))\). Let also \(f\_ 2\) be asymptotically positive and \(f\_ 2(x) \in o(g(x))\). Then \(f\_ 1(x) + f\_ 2(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 68.

Theorem 113

Let \(f\_ 1(x) \in \Theta (g(x))\). Let also \(f\_ 2\) be asymptotically negative and \(f\_ 2(x) \in \omega (g(x))\). Then \(f\_ 1(X) + f\_ 2(x) \in \Theta (g(x))\).

Proof

This follows directly from Lemma 69.

3.7 Multiplicativity

Lemma 114
#

Let \(f\_ 1\) and \(f\_ 2\) be asymptotically nonnegative functions such that \(f\_ 1(x) \in O(g\_ 1(x))\) and \(f\_ 2(x) \in O(g\_ 2(x))\). Then \(f\_ 1(x) * f\_ 2(x) \in O(g\_ 1(x) * g\_ 2(x))\).

Proof

This follows directly from Lemma 70.

Lemma 115
#

Let \(f\_ 1\) and \(f\_ 2\) be asymptotically nonpositive functions such that \(f\_ 1(x) \in \Omega (g\_ 1(x))\) and \(f\_ 2(x) \in \Omega (g\_ 2(x)\). Then \(f\_ 1(x) * f\_ 2(x) \in \Omega (g\_ 1(x) * g\_ 2(x))\).

Proof

This follows directly from Lemma 71.