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Bachman-Landau notation and the Master theorem for divide-and-conquer recurrences
This project’s goal is to formalize a proof of the Master theorem for divide-and-conquer

recurrences. Along with the Master theorem, we also state definitions and some properties of
the Big-O and its sibling notations.

We use original and standard definitions of the Big-O notation [1, 4, 5], as well as Knuth’s
definition of Big-Omega and Big-Theta [3]. We use a slightly adapted formulation of the Master
Theorem from Cormen et al. [2], with the difference being due to our use of functions on natural
numbers as opposed to their more general formulation. The idea of the formalized proof is also
adapted from the same source, but their proof skips many technical steps, so our proof appears
to hold little resemblance.
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Chapter 1

Basic asymptotic properties of
functions

Definition 1. 𝑓 is asymptotically positive if there exists 𝑥0 such that 𝑓(𝑥) > 0 for all 𝑥 ≥ 𝑥0.

Definition 2. 𝑓 is asymptotically negative if there exists 𝑥0 such that 𝑓(𝑥) < 0 for all 𝑥 ≥ 𝑥0.

Definition 3. 𝑓 is asymptotically nonpositive if there exists 𝑥0 such that 𝑓(𝑥) ≥ 0 for all 𝑥 ≥ 𝑥0.

Definition 4. 𝑓 is asymptotically negative if there exists 𝑥0 such that 𝑓(𝑥) ≤ 0 for all 𝑥 ≥ 𝑥0.

Definition 5. 𝑓 is asymptotically less than 𝑔 if there exists 𝑥0 such that 𝑓(𝑥) ≤ 𝑔(𝑥) for all
𝑥 ≥ 𝑥0.

Definition 6. 𝑓 is asymptotically greater than 𝑔 if there exists 𝑥0 such that 𝑓(𝑥) ≥ 𝑔(𝑥) for all
𝑥 ≥ 𝑥0.

1.1 Asymptotic positivity and negativity
Lemma 7. If 𝑓 is asymptotically negative, then −𝑓 is asymptotically positive.

Proof. By definition of asymptotic positivity, there exists an 𝑥_0 such that 𝑓(𝑥) > 0 for all
𝑥 > 𝑥_0. It follows that −𝑓(𝑥) > 0, which is what is needed.

Lemma 8. If 𝑓 is asymptotically positive, then −𝑓 is asymptotically negative.

Proof. By definition of asymptotic negativity, there exists an 𝑥_0 such that 𝑓(𝑥) < 0 for all
𝑥 > 𝑥_0. It follows that −𝑓(𝑥) < 0, which is what is needed.

1.2 Asymptotic inequality
1.2.1 Positivity and negativity
Lemma 9. Let 𝑓 be asymptotically positive and let it be asymptotically less than 𝑔. Then 𝑔 is
asymptotically positive.
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Proof. Assume with no loss of generality that 𝑓(𝑥) > 0 for all 𝑥 > 𝑥_0 and that 𝑓(𝑦) ≤ 𝑔(𝑦)
for all 𝑦 > 𝑦_0. Let 𝑧_0 = max{𝑥_0, 𝑦_0}. By transitivity of the inequality relations, we have
𝑔(𝑧) > 0 for all 𝑧 > 𝑧_0.

Lemma 10. Let 𝑓 be asymptotically less than 𝑔 and let 𝑔 be asymptotically negative. Then 𝑓 is
asymptotically negative.
Proof. Assume with no loss of generality that 𝑔(𝑥) < 0 for all 𝑥 > 𝑥_0 and that 𝑓(𝑦) ≤ 𝑔(𝑦)
for all 𝑦 > 𝑦_0. Let 𝑧_0 = max{𝑥_0, 𝑦_0}. By transitivity of the inequality relations, we have
𝑓(𝑧) < 0 for all 𝑧 > 𝑧_0.

Lemma 11. Let 𝑓 be asymptotically greater than 𝑔 and let 𝑔 be asymptotically negative. Then
𝑔 is asymptotically negative.
Proof. By Lemma 17, this statement is equivalent to Lemma 9.

Lemma 12. Let 𝑓 be asymptotically negative and let it be asymptotically greater than 𝑔. Then
𝑔 is asymptotically negative.
Proof. By Theorem 17, this statement is equivalent to Lemma 10.

1.2.2 Reflexivity
Lemma 13. 𝑓 is asymptotically less than 𝑓.
Proof. By reflexivity of ≤, we have 𝑓(𝑥) ≤ 𝑓(𝑥) for any given 𝑥.

Lemma 14. 𝑓 is asymptotically greater than 𝑓.
Proof. By reflexivity of ≥, we have 𝑓(𝑥) ≥ 𝑓(𝑥) for any given 𝑥.

1.2.3 Equivalence
Lemma 15. Let 𝑓 be asymptotically less than 𝑔. Then 𝑔 is asymptotically greater than 𝑓.
Proof. Since 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 > 𝑥_0, we have 𝑔(𝑥) ≥ 𝑓(𝑥).
Lemma 16. Let 𝑓 be asymptotically greater than 𝑔. Then 𝑔 is asymptotically less than 𝑓.
Proof. Since 𝑓(𝑥) ≥ 𝑔(𝑥) for all 𝑥 > 𝑥_0, we have 𝑔(𝑥) ≤ 𝑓(𝑥).
Theorem 17. 𝑓 is asymptotically less than 𝑔 if and only if 𝑔 is asymptotically greater than 𝑓.
Proof. Lemma 15 and Lemma 16 are both directions respectively.

1.2.4 Transitivity
Lemma 18. If 𝑓 is asymptotically less than 𝑔 and 𝑔 is asymptotically less than ℎ, then 𝑓 is
asymptotically less than ℎ.
Proof. By assumption, 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ≥ 𝑥_0 and 𝑔(𝑦) ≤ ℎ(𝑦) for all 𝑦 ≥ 𝑦_0. Let
𝑧_0 = max{𝑥_0, 𝑦_0}. By transitivity, we have 𝑓(𝑧) ≤ 𝑔(𝑧) for all 𝑧 ≥ 𝑧_0.

Lemma 19. If 𝑓 is asymptotically greater than 𝑔 and 𝑔 is asymptotically greater than ℎ, then 𝑓
is asymptotically greater than ℎ.
Proof. By the equivalence given by Lemma 17, we can apply Lemma 18 in reverse, since ℎ is
asymptotically less than 𝑔 and 𝑔 is asymptotically less than 𝑓 .
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1.2.5 Additivity
Lemma 20. Let 𝑓_1 be asymptotically less than 𝑔_1 and 𝑓_2 be asymptotically less than 𝑔_2.
Then 𝑓_1 + 𝑓_2 is asymptotically less than 𝑔_1 + 𝑔_2.

Proof. Let 𝑥_0 be such that 𝑓_1(𝑥) ≤ 𝑔_1(𝑥) for all 𝑥 > 𝑥_0 and let 𝑦_0 be such that 𝑓_2(𝑦) ≤
𝑔_2(𝑦) for all 𝑦 > 𝑦_0. Those exist due to assumptions. Now let 𝑧_0 = max{𝑥_0, 𝑦_0}. By
transitivity, 𝑓_1(𝑧) ≤ 𝑔_1(𝑧) and 𝑓_2(𝑧) ≤ 𝑔_2(𝑧) for all 𝑧 > 𝑧_0. By additivity, we can merge
both inequalities by adding both terms on the left side and both terms on the right side. We
thus get 𝑓_1(𝑧) + 𝑓_2(𝑧) ≤ 𝑔_1(𝑧) + 𝑔_2(𝑧), which by definition and and extensionality means
that 𝑓_1 + 𝑓_2 is asymptotically less than 𝑔_1 + 𝑔_2.

Lemma 21. Let 𝑓_1 be asymptotically greater than 𝑔_1 and 𝑓_2 be asymptotically greater than
𝑔_2. Then 𝑓_1 + 𝑓_2 is asymptotically greater than 𝑔_1 + 𝑔_2.

Proof. By Theorem 17, 𝑔_1 and 𝑔_2 are asymptotically less than 𝑓_1 and 𝑓_2 respectively. It
suffices to show that 𝑔_1 + 𝑔_2 is asymptotically less than 𝑓_1 + 𝑓_2, which is precisely the
result of Lemma 20.

Lemma 22. Let 𝑓_1 be asymptotically positive. Let also 𝑓_2 be asymptotically greater than 𝑔.
Then 𝑓_1 + 𝑓_2 is asymptotically greater than 𝑔.

Proof. By definition, there exists some 𝑥_0 such that 𝑓_1(𝑥) > 0 for all 𝑥 > 𝑥_0. We also have
𝑓_2(𝑦) ≥ 𝑔(𝑦) for all 𝑦 > 𝑦_0 for some 𝑦_0. Let 𝑧_0 = max{𝑥_0, 𝑦_0, }. We now have, for all
𝑧 > 𝑧_0 both 𝑓_1(𝑧) > 0 and 𝑓_2(𝑧) ≥ 𝑔(𝑧). By additivity, we have 𝑓_1(𝑧)+𝑓_2(𝑧) ≥ 𝑔(𝑧).
Lemma 23. Let 𝑓_1 be asymptotically negative. Let also 𝑓_2 be asymptotically less than 𝑔.
Then 𝑓_1 + 𝑓_2 is asymptotically less than 𝑔.

Proof. By definition, there exists some 𝑥_0 such that 𝑓_1(𝑥) < 0 for all 𝑥 > 𝑥_0. We also have
𝑓_2(𝑦) ≤ 𝑔(𝑦) for all 𝑦 > 𝑦_0 for some 𝑦_0. Let 𝑧_0 = max{𝑥_0, 𝑦_0, }. We now have, for all
𝑧 > 𝑧_0 both 𝑓_1(𝑧) < 0 and 𝑓_2(𝑧) ≤ 𝑔(𝑧). By additivity, we have 𝑓_1(𝑧)+𝑓_2(𝑧) ≤ 𝑔(𝑧).

1.2.6 Scalar multiplicativity
Lemma 24. Let 𝑐 > 0 and let 𝑓 be asymptotically less than 𝑔. Then 𝑐 ⋅ 𝑓 is asymptotically less
than 𝑐 ⋅ 𝑔.

Proof. This is a simple consequence of scalar multiplication by a positive constant.

Lemma 25. Let 𝑐 > 0 and let 𝑓 be asymptotically greater than 𝑔. Then 𝑐 ⋅ 𝑓 is asymptotically
greater than 𝑐 ⋅ 𝑔.

Proof. By applying Theorem 17, the proof boils down to proving that 𝑐 ⋅ 𝑔 is asymptotically less
than 𝑐 ⋅ 𝑓 , which is precisely shown by Lemma 24.

Lemma 26. Let 𝑐 < 0 and let 𝑓 be asymptotically less than 𝑔. Then 𝑐 ⋅ 𝑓 is asymptotically
greater than 𝑐 ⋅ 𝑔.

Proof. This is a simple consequence of the fact that if 𝑓(𝑥) ≤ 𝑔(𝑥), then for a 𝑐 < 0 we have
𝑐 ⋅ 𝑓(𝑥) ≥ 𝑐 ⋅ 𝑔(𝑥).
Lemma 27. Let 𝑐 < 0 and let 𝑓 be asymptotically greater than 𝑔. Then 𝑐 ⋅ 𝑓 is asymptotically
less than 𝑐 ⋅ 𝑔.

Proof. Similar to above, the proof is a direct application of Theorem 17 and Lemma 26.
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1.2.7 Multiplicativity
Theorem 28. Let 𝑓_1 and 𝑓_2 be asymptotically nonnegative functions. If f_1 is asymptotically
less than 𝑔_1 and 𝑓_2 is asymptotically less than 𝑔_2, then 𝑓_1 ∗ 𝑓_2 is asymptotically less
than 𝑔_1 ∗ 𝑔_2.

Proof. Asymptotic properties give constants 𝑥_𝑖, 0 ≤ 𝑖 ≤ 3, above which each property holds.
We take 𝑥𝑀 = max0≤𝑖≤3 𝑥𝑖 as the constant of the needed property. For all 𝑥 > 𝑥𝑀 , all given
asymptotic properties hold, so the wanted property holds by properties of the inequality relation.

Theorem 29. Let 𝑓_1 and 𝑓_2 be asymptotically nonpositive functions. If f_1 is asymptotically
greater than 𝑔_1 and 𝑓_2 is asymptotically greater than 𝑔_2, then 𝑓_1 ∗ 𝑓_2 is asymptotically
less than 𝑔_1 ∗ 𝑔_2.

Proof. Analogously to above, the proof comes from taking the maximum of asymptotic constants
as the asymptotic lower bound for nonpositivity. This time, however, the inequality flips due
to nonpositive terms in 𝑓_1(𝑛) ∗ 𝑓_2(𝑛) ≤ 𝑔_1(𝑛) ∗ 𝑔_2(𝑛), since 𝑛 is larger than all of the
asymptotic lower bounds.
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Chapter 2

Asymptotic growth

Definition 30. 𝑓 is asymptotically bounded above by 𝑔 if there exists a 𝑘 > 0 such that 𝑓 is
asymptotically less than 𝑘 ∗ 𝑔.
Definition 31. 𝑓 is asymptotically bounded below by 𝑔 if there exists 𝑘 > 0 such that 𝑓 is
asymptotically greater than 𝑘 ∗ 𝑔.
Definition 32. 𝑓 is asymptotically bounded by 𝑔 if 𝑓 is asymptotically bounded above and
below by 𝑔.
Definition 33. 𝑓 is asymptotically dominated by 𝑔 if for all 𝑘 > 0 𝑓 is asymptotically less than
𝑘 ∗ 𝑔.
Definition 34. 𝑓 asymptotically dominates 𝑔 if for all 𝑘 > 0 (𝑥) is asymptotically greater than
𝑘 ∗ 𝑔.
Lemma 35. If 𝑓 is dominated by 𝑔, then it’s also bounded above by 𝑔.
Proof. The definitions of 𝑓 being dominated and bounded above by 𝑔 only differ in the quantifier
before 𝑘 at the very start (universal for the hypothesis, existential for the goal), so it suffices to
use any positive value for 𝑘. We can use 1. The desired result then follows directly.

Lemma 36. If 𝑓 dominates 𝑔, then it’s bounded below by 𝑔.
Proof. The proof is entirely analogous to the previous proof.

Lemma 37. 𝑓 is asymptotically bounded above and below by 𝑔 if and only if 𝑓 is asymptotically
bounded by 𝑔.
Proof. Both directions follow directly from the definition of asymptotic boundedness.

Lemma 38. Let 𝑔 be asymptotically positive. Then 𝑓 is not both asymptotically bounded below
by 𝑔 and asymptotically dominated by 𝑔.
Proof. Suppose 𝑓 is asymptotically bounded below by 𝑔 and also asymptotically dominated by
𝑔. We need to find a contradiction to prove the statement.

First, we claim that there exists 𝑥_0 such that for all 𝑥 ≥ 𝑥_0 we have 𝑓(𝑥) ≥ 𝑘 ⋅ 𝑔(𝑥) for
some 𝑘 > 0, 𝑔(𝑥) ≥ 0 and 𝑓(𝑥) ≤ 𝑘′ ⋅ 𝑔(𝑥) for all 𝑘′ > 0. Each of the asymptotic assumption
gives one such constant, so taking the maximum of all three gives the needed value.

For the contradiction, consider 𝑓(𝑥) ≤ 𝑘′ ⋅ 𝑔(𝑥) when 𝑘′ = 𝑘/2. In this case, we have
𝑓(𝑥) ≤ (𝑘/2)⋅𝑔(𝑥), but we also have 𝑘⋅𝑔(𝑥) ≤ 𝑓(𝑥), leading by transitivity to 𝑘⋅𝑔(𝑥) ≤ (𝑘/2)⋅𝑔(𝑥),
an obvious contradiction to the fact that (𝑘/2) ⋅ 𝑔(𝑥) ≤ 𝑘 ⋅ 𝑔(𝑥).
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Theorem 39. Let 𝑓 be asymptotically positive. If 𝑓 is asymptotically bounded below by 𝑔, then
𝑓 is not asymptotically dominated by 𝑔.

Proof. This is a direct application of Lemma 38.

Theorem 40. Let 𝑓 be asymptotically positive. If 𝑓 is asymptotically bounded below by 𝑔, then
𝑓 is not asymptotically dominated by 𝑔.

Proof. This is a direct application of Lemma 38.

Lemma 41. Let 𝑔 be asymptotically positive. Then it does not hold that both 𝑓 is asymptotically
bounded above by 𝑔 and 𝑓 asymptotically dominate 𝑔.

Proof. The proof is analogous to the proof of Lemma 38. This time, we set 𝑘′ = 𝑘 + 1 and thus
produce the false inequality (𝑘 + 1) ⋅ 𝑔(𝑥) ≤ 𝑘 ⋅ 𝑔(𝑥).
Theorem 42. Let 𝑓 be asymptotically positive. If 𝑓 is bounded below by 𝑔, then 𝑓 does not
dominate 𝑔.

Proof. This is a direct application of Lemma 41.

Theorem 43. Let 𝑓 be asymptotically positive. If 𝑓 is asymptotically bounded above by 𝑔, then
𝑓 does not asymptotically dominate 𝑔.

Proof. This is a direct application of Lemma 41.

Lemma 44. Let 𝑔 be asymptotically positive. Then it is not true that both 𝑓 is asymptotically
dominated by 𝑔 and that 𝑓 dominates 𝑔.

Proof. Suppose 𝑓 both dominates 𝑔 and is dominated by 𝑔. Our goal is to find a contradiction.
We have by definition the inequalities 𝑔(𝑥) > 0, 𝑓(𝑥) ≥ 𝑘_1 ⋅ 𝑔(𝑥) and 𝑓(𝑥) ≤ 𝑘_2 ⋅ 𝑔(𝑥) for
all 𝑘_1 > 0, 𝑘_2 > 0 and for all 𝑥 ≥ 𝑥_0 for some 𝑥_0. Note that we use the same constant
𝑥_0 for all inequalities with no loss of generality. In fact, we shall also use the same 𝑥_0 in the
asymptotic positivity condition 𝑔(𝑥) > 0.

Fix 𝑘_1 = 2 and 𝑘_2 = 1 (generally, we only need 𝑘_1 ≥ 𝑘_2), so we now have 𝑓(𝑥) ≥ 2⋅𝑔(𝑥)
and 𝑓(𝑥) ≤ 𝑔(𝑥). From these inequalities, it immediately follows that 2 ⋅ 𝑔(𝑥) ≤ 𝑔(𝑥). However,
since 1 ≤ 2 and 𝑔(𝑥) > 0, we have 𝑔(𝑥) < 2 ⋅ 𝑔(𝑥). We thus have two contradicting inequalities,
finishing the proof.

Theorem 45. Let 𝑔 be asymptotically positive. If 𝑓 is asymptotically dominated by 𝑔, then 𝑓
does not asymptotically dominate 𝑔.

Proof. This is a direct application of Lemma 44.

Theorem 46. Let 𝑔 be asymptotically positive. If 𝑓 asymptotically dominates 𝑔, then 𝑓 is not
asymptotically dominated by 𝑔.

Proof. This is a direct application of Lemma 44.
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2.1 Reflexivity
Lemma 47. 𝑓 is asymptotically bounded by itself.

Proof. Proving asymptotic boundedness is equivalent to proving boundedness above and below.
Both can be proved the same way - we choose 1𝐾 for 𝐾 and 1𝑅 for 𝑁 , then the required
asymptotic growth properties follow from definitions of identity elements for 𝐾 and 𝑅.

Lemma 48. 𝑓 is asymptotically bounded above by itself.

Proof. This follows directly from 47.

Lemma 49. 𝑓 is asymptotically bounded below by itself.

Proof. This follows directly from 47.

2.2 Transitivity
Lemma 50. If 𝑓 is asymptotically bounded above by 𝑔 and 𝑔 is asymptotically bounded above by
ℎ, then 𝑓 is asymptotically bounded above by ℎ.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓(𝑥) ≤ 𝑘_1 ⋅ 𝑔(𝑥) and 𝑔(𝑥) ≤ 𝑘_2 ⋅ ℎ(𝑥) for
sufficiently large 𝑥. By multiplicativity and transitivity, we have 𝑓(𝑥) ≤ 𝑘_1 ⋅ 𝑘_2 ⋅ ℎ(𝑥).
Lemma 51. If 𝑓 is asymptotically bounded below by 𝑔 and 𝑔 is asymptotically bounded below by
ℎ, then 𝑓 is asymptotically bounded below by ℎ.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓(𝑥) ≥ 𝑘_1 ⋅ 𝑔(𝑥) and 𝑔(𝑥) ≥ 𝑘_2 ⋅ ℎ(𝑥) for
sufficiently large 𝑥. By multiplicativity and transitivity, we have 𝑓(𝑥) ≥ 𝑘_1 ⋅ 𝑘_2 ⋅ ℎ(𝑥).
Lemma 52. If 𝑓 is asymptotically bounded by 𝑔 and 𝑔 is asymptotically bounded by ℎ, then 𝑓 is
asymptotically bounded by ℎ.

Proof. A direct consequence of Lemma 50 and Lemma 51.

Lemma 53. If 𝑓 is asymptotically dominated by 𝑔 and 𝑔 is asymptotically dominated by ℎ, then
𝑓 is asymptotically dominated by ℎ.

Proof. Let 𝑘 > 0. Then by first assumption, we have 𝑓(𝑥) ≤ 𝑘 ⋅ 𝑔(𝑥) for large 𝑥. By the
second assumption, we have 𝑔(𝑥) ≤ ℎ(𝑥) for large 𝑥. By multiplicativity and transitivity, we get
𝑓(𝑥) ≤ 𝑘 ⋅ ℎ(𝑥).
Lemma 54. If 𝑓 asymptotically dominates 𝑔 and 𝑔 asymptotically dominates ℎ, then 𝑓 asymp-
totically dominates ℎ.

Proof. Let 𝑘 > 0. Then by first assumption, we have 𝑓(𝑥) ≥ 𝑘 ⋅ 𝑔(𝑥) for large 𝑥. By the
second assumption, we have 𝑔(𝑥) ≥ ℎ(𝑥) for large 𝑥. By multiplicativity and transitivity, we get
𝑓(𝑥) ≥ 𝑘 ⋅ ℎ(𝑥).
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2.3 Scalar multiplicativity
Lemma 55. Let 𝑐 > 0. If 𝑓 is bounded above by 𝑔, then 𝑐 ⋅ 𝑓 is also bounded above by 𝑔.

Proof. Let 𝑘 be the constant such that 𝑓 is asymptotically less than 𝑘 ⋅ 𝑔. By positive scalar
multiplicativity of asymptotic inequality, 𝑐 ⋅ 𝑓 is asymptotically less than 𝑐 ⋅ 𝑘 ⋅ 𝑔. Since 𝑐 ⋅ 𝑘 > 0,
this implies that 𝑐 ⋅ 𝑓 is bounded above by 𝑔.

Lemma 56. Let 𝑐 > 0. If 𝑓 is bounded below by 𝑔, then 𝑐 ⋅ 𝑓 is also bounded below by 𝑔.

Proof. Let 𝑘 be the constant such that 𝑓 is asymptotically greater than 𝑘 ⋅ 𝑔. By positive scalar
multiplicativity of asymptotic inequality, 𝑐⋅𝑓 is asymptotically greater than 𝑐⋅𝑘⋅𝑔. Since 𝑐⋅𝑘 > 0,
this implies that 𝑐 ⋅ 𝑓 is bounded below by 𝑔.

Lemma 57. Let 𝑐 > 0. If 𝑓 is bounded by 𝑔, then 𝑐 ⋅ 𝑓 is also bounded by 𝑔.

Proof. Above boundedness is exactly Lemma 55 and below boundedness is exactly Lemma 56.

Lemma 58. Let 𝑐 < 0. If 𝑓 is bounded above by 𝑔, then 𝑐 ⋅ 𝑓 is bounded above by −𝑔.

Proof. Let 𝑘 be the constant such that 𝑓 is asymptotically less than 𝑘 ⋅ 𝑔. By positive scalar
multiplicativity of asymptotic inequality, −𝑐 ⋅ 𝑓 is asymptotically less than −𝑐 ⋅ 𝑘 ⋅ 𝑔. Since
−𝑐 ⋅ 𝑘 > 0, this implies that 𝑐 ⋅ 𝑓 is bounded above by −𝑔.

Lemma 59. Let 𝑐 < 0. If 𝑓 is bounded below by 𝑔, then 𝑐 ⋅ 𝑓 is bounded below by −𝑔.

Proof. Let 𝑘 be the constant such that 𝑓 is asymptotically greater than 𝑘 ⋅ 𝑔. By positive scalar
multiplicativity of asymptotic inequality, −𝑐 ⋅ 𝑓 is asymptotically greater than −𝑐 ⋅ 𝑘 ⋅ 𝑔. Since
−𝑐 ⋅ 𝑘 > 0, this implies that 𝑐 ⋅ 𝑓 is bounded below by −𝑔.

Lemma 60. Let 𝑐 < 0. If 𝑓 is bounded by 𝑔, then 𝑐 ⋅ 𝑓 is bounded by −𝑔.

Proof. Above boundedness is exactly Lemma 58 and below boundedness is exactly Lemma 59.

2.4 Additivity
Lemma 61. Let 𝑓_1 and 𝑓_2 be bounded above by 𝑔. Then 𝑓_1 + 𝑓_2 is also bounded above
by 𝑔.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓_1 is asymptotically less than 𝑘_1 ⋅ 𝑔 and
𝑓_2 is asymptotically less than 𝑘_2 ⋅ 𝑔. By additivity of asymptotic inequality, 𝑓_1 + 𝑓_2 is
asymptotically less than (𝑘_1 ∗ 𝑘_2) ⋅ 𝑔. It directly follows that 𝑓_1 + 𝑓_2 is asymptotically
bounded above by 𝑔.

Lemma 62. Let 𝑓_1 and 𝑓_2 be bounded below by 𝑔. Then 𝑓_1 + 𝑓_2 is also bounded below
by 𝑔.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓_1 is asymptotically greater than 𝑘_1 ⋅ 𝑔
and 𝑓_2 is asymptotically greater than 𝑘_2⋅𝑔. By additivity of asymptotic inequality, 𝑓_1+𝑓_2
is asymptotically greater than (𝑘_1∗𝑘_2)⋅𝑔. It directly follows that 𝑓_1+𝑓_2 is asymptotically
bounded below by 𝑔.
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Lemma 63. Let 𝑓_1 and 𝑓_2 be bounded by 𝑔. Then 𝑓_1 + 𝑓_2 is also bounded by 𝑔.

Proof. This is proved directly by Lemma 61 and Lemma 62.

Lemma 64. Let 𝑓_1 be bounded below by 𝑔 and let 𝑓_2 be asymptotically positive. Then
𝑓_1 + 𝑓_2 is bounded below by 𝑔.

Proof. This property immediately follows from Lemma 22.

Lemma 65. Let 𝑓_1 be bounded above by 𝑔 and let 𝑓_2 be asymptotically negative. Then
𝑓_1 + 𝑓_2 is bounded above by 𝑔.

Proof. This property immediately follows from Lemma 23.

Lemma 66. Let 𝑓_1 be bounded by 𝑔. Let also 𝑓_2 be asymptotically positive and bounded
above by 𝑔. Then 𝑓_1 + 𝑓_2 is bounded by 𝑔.

Proof. This property immediately follows from Lemma 61 and Lemma 64.

Lemma 67. Let 𝑓_1 be bounded by 𝑔. Let also 𝑓_2 be asymptotically negative and bounded
below by 𝑔. Then 𝑓_1 + 𝑓_2 is bounded by 𝑔.

Proof. This property immediately follows from Lemma 62 and Lemma 65.

Lemma 68. Let 𝑓_1 be bounded by 𝑔. Let also 𝑓_2 be asymptotically positive and let 𝑓_2 be
dominated by 𝑔. Then 𝑓_1 + 𝑓_2 is bounded by 𝑔.

Proof. We prove this with an application of Lemma 66 on Lemma 35.

Lemma 69. Let 𝑓_1 be bounded by 𝑔. Let also 𝑓_2 be asymptotically negative and let 𝑓_2
dominate 𝑔. Then 𝑓_1 + 𝑓_2 is bounded by 𝑔.

Proof. We prove this with an application of Lemma 67 on Lemma 36.

2.5 Multiplicativity
Lemma 70. Let 𝑓_1 and 𝑓_2 be asymptotically nonnegative functions such that 𝑓_1 is asymp-
totically bounded above by 𝑔_1 and 𝑓_2 is asymptotically bounded above by 𝑔_2. Then 𝑓_1∗𝑓_2
is asymptotically bounded above by 𝑔_1 ∗ 𝑔_2.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓_1 is asymptotically less than 𝑔_1 and
𝑓_2 is asymptotically less than 𝑔_2. By multiplicativity of asymptotic inequality, 𝑓_1 ∗ 𝑓_2
is asymptotically less than 𝑘_1 ⋅ 𝑔_1 ∗ 𝑘_2 ⋅ 𝑔_2, which is equivalent to asymptotic above
boundedness of 𝑓_1 ∗ 𝑓_2 by 𝑔_1 ∗ 𝑔_2.

Lemma 71. Let 𝑓_1 and 𝑓_2 be asymptotically nonpositive functions such that 𝑓_1 is asymp-
totically bounded below by 𝑔_1 and 𝑓_2 is asymptotically bounded below by 𝑔_2. Then 𝑓_1∗𝑓_2
is asymptotically bounded below by 𝑔_1 ∗ 𝑔_2.

Proof. Let 𝑘_1 and 𝑘_2 be the constants such that 𝑓_1 is asymptotically greaterthan 𝑔_1 and
𝑓_2 is asymptotically greater than 𝑔_2. By multiplicativity of asymptotic inequality, 𝑓_1∗𝑓_2
is asymptotically less than 𝑘_1 ⋅ 𝑔_1 ∗ 𝑘_2 ⋅ 𝑔_2, which is equivalent to asymptotic below
boundedness of 𝑓_1 ∗ 𝑓_2 by 𝑔_1 ∗ 𝑔_2.
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Chapter 3

Bachman-Landau notation

Bachman-Landau family of notations is the name of a few closely related notations used in
algorithm analysis. The most famous of them is the so-called big-O notation. While most for-
mulations are defined on functions from naturals or reals to reals, we define them more generally
- requirements for the types of the domain and codomain vary between different properties.
However, all properties hold for functions from a linearly ordered commutative ring to a linearly
ordered field. In the rest of this page, we let 𝑅 be a linearly ordered commutative ring and 𝐹
be a linearly ordered field. We will also use symbols 𝑓 , 𝑓_1, 𝑓_2, 𝑔, 𝑔_1 and 𝑔_2 for func-
tions 𝑅 → 𝐹 . Also, we let 𝑀 be a right 𝑅-module, although often only a (distributive) left
multiplicative action on 𝑅 is required.

3.1 Asymptotic sets
Definition 72. (Big O notation) 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) if it is asymptotically bounded above by 𝑔(𝑥).
Definition 73. (Big Omega notation) 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) if it is asymptotically bounded below by
𝑔(𝑥).
Definition 74. (Big Theta notation) 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) if it is asymptotically bounded by 𝑔(𝑥).
Definition 75. (Small O notation) 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) if it is asymptotically dominated by 𝑔(𝑥).
Definition 76. (Small Omega notation) 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)) if it asymptotically dominates 𝑔(𝑥).

3.2 Relations between asymptotic sets
Lemma 77. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)), then 𝑓(𝑥) ∈ 𝑂(𝑓(𝑥)).
Proof. Since 𝑜(𝑔(𝑥)) and 𝑂(𝑓(𝑥)), we can simply use Lemma 35.

Theorem 78. If 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)), then 𝑓(𝑥) ∈ Ω(𝑔(𝑥)).
Proof. The proof is a simple application of Theorem 36.

Theorem 79. 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) and 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) if and only if 𝑓(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. Similarly to previous proofs, the proof is a direct application of Lemma 37.
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Lemma 80. Let 𝑔 be asymptotically positive. Then 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) and 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) are not
both true.

Proof. A direct application of Lemma 38.

Lemma 81. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) then 𝑓(𝑥) ∉ 𝑜(𝑔(𝑥)).
Proof. A direct application of Lemma 80.

Lemma 82. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓(𝑥) ∉ Θ(𝑔(𝑥)).
Proof. A direct application of Lemma 80.

Lemma 83. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) then 𝑓(𝑥) ∉ 𝑜(𝑔(𝑥)).
Proof. A direct application of Lemma 39.

Lemma 84. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓(𝑥) ∉ Ω(𝑔(𝑥)).
Proof. A direct application of Lemma 40.

Lemma 85. Let 𝑔 be asymptotically positive. Then 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) and 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)) are not
both true.

Proof. A direct application of Lemma 41.

Lemma 86. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) then 𝑓(𝑥) ∉ 𝜔(𝑔(𝑥)).
Proof. A direct application of Lemma 85.

Lemma 87. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)) then 𝑓(𝑥) ∉ Θ(𝑔(𝑥)).
Proof. A direct application of Lemma 85.

Lemma 88. Let 𝑔 be asymptotically positive. Then 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) and 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)) are not
both true.

Proof. A direct application of Lemma 44.

Lemma 89. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓(𝑥) ∉ 𝜔(𝑔(𝑥)).
Proof. A direct application of Lemma 88.

Lemma 90. Let 𝑔 be asymptotically positive. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) then 𝑓(𝑥) ∉ 𝜔(𝑔(𝑥)).
Proof. A direct application of Lemma 88.

3.3 Reflexivity
Lemma 91. 𝑓(𝑥) ∈ Θ(𝑓(𝑥)).
Proof. Direct consequence of Lemma 47.

Lemma 92. 𝑓(𝑥) ∈ 𝑂(𝑓(𝑥)).
Proof. This follows directly from Lemma 48.

Lemma 93. 𝑓(𝑥) ∈ Ω(𝑓(𝑥)).
Proof. This follows directly from Lemma 49.
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3.4 Transitivity
Lemma 94. If 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) and 𝑔(𝑥) ∈ 𝑂(ℎ(𝑥)), then 𝑓(𝑥) ∈ 𝑂(ℎ(𝑥)).
Proof. This follows directly from Lemma 50.

Lemma 95. If 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) and 𝑔(𝑥) ∈ Ω(ℎ(𝑥)), then 𝑓(𝑥) ∈ Ω(ℎ(𝑥)).
Proof. This follows directly from Lemma 51.

Lemma 96. If 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) and 𝑔(𝑥) ∈ Θ(ℎ(𝑥)), then 𝑓(𝑥) ∈ Θ(ℎ(𝑥)).
Proof. This follows directly from Lemma 52.

Lemma 97. If 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) and 𝑔(𝑥) ∈ 𝑜(ℎ(𝑥)), then 𝑓(𝑥) ∈ 𝑜(ℎ(𝑥)).
Proof. This follows directly from Lemma 53.

Lemma 98. If 𝑓(𝑥) ∈ 𝜔(𝑔(𝑥)) and 𝑔(𝑥) ∈ 𝜔(ℎ(𝑥)), then 𝑓(𝑥) ∈ 𝜔(ℎ(𝑥)).
Proof. This follows directly from Lemma 54.

3.5 Scalar multiplicativity
Lemma 99. Let 𝑐 > 0. If 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)), then 𝑐 ⋅ 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)).
Proof. This follows directly from Lemma 55.

Lemma 100. Let 𝑐 > 0. If 𝑓(𝑥) ∈ Ω(𝑔(𝑥)), then 𝑐 ⋅ 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) is also bounded below by 𝑔.

Proof. This follows directly from Lemma 56.

Lemma 101. Let 𝑐 > 0. If 𝑓(𝑥) ∈ Θ(𝑔(𝑥)), then 𝑐 ⋅ 𝑓(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 57.

Lemma 102. Let 𝑐 < 0. If 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)), then 𝑐 ⋅ 𝑓(𝑥) ∈ 𝑂(−𝑔(𝑥)).
Proof. This follows directly from Lemma 58.

Lemma 103. Let 𝑐 < 0. If 𝑓 ∈ Ω(𝑔(𝑥)), then 𝑐 ⋅ 𝑓(𝑥) ∈ Ω(−𝑔(𝑥)).
Proof. This follows directly from Lemma 59.

Lemma 104. Let 𝑐 < 0. If 𝑓(𝑥) ∈ Θ(𝑔(𝑥)), then 𝑐 ⋅ 𝑓 ∈ Θ(−𝑔(𝑥)).
Proof. This follows directly from Lemma 60.
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3.6 Additivity
Lemma 105. Let 𝑓_1(𝑥), 𝑓_2(𝑥) ∈ 𝑂(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ 𝑂(𝑔(𝑥)).
Proof. This follows directly from Lemma 61.

Lemma 106. Let 𝑓_1(𝑥), 𝑓_2(𝑥) ∈ Ω(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ Ω(𝑔(𝑥)).
Proof. This follows directly from Lemma 62.

Lemma 107. Let 𝑓_1(𝑥), 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 63.

Lemma 108. Let 𝑓_1(𝑥) ∈ Ω(𝑔(𝑥)) and let 𝑓_2 be asymptotically positive. Then 𝑓_1(𝑥) +
𝑓_2(𝑥) ∈ Ω(𝑔(𝑥)).
Proof. This follows directly from Lemma 64.

Lemma 109. Let 𝑓_1(𝑥) ∈ 𝑂(𝑔(𝑥)) and let 𝑓_2 be asymptotically negative. Then 𝑓_1(𝑥) +
𝑓_2(𝑥) ∈ 𝑂(𝑔(𝑥)).
Proof. This follows directly from Lemma 65.

Lemma 110. Let 𝑓_1(𝑥) ∈ Θ(𝑔(𝑥)). Let also 𝑓_2 be asymptotically positive and 𝑓_2(𝑥) ∈
𝑂(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 66.

Lemma 111. Let 𝑓_1(𝑥) ∈ Θ(𝑔(𝑥)). Let also 𝑓_2 be asymptotically negative and 𝑓_2(𝑥) ∈
Ω(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 67.

Lemma 112. Let 𝑓_1(𝑥) ∈ Θ(𝑔(𝑥)). Let also 𝑓_2 be asymptotically positive and 𝑓_2(𝑥) ∈
𝑜(𝑔(𝑥)). Then 𝑓_1(𝑥) + 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 68.

Theorem 113. Let 𝑓_1(𝑥) ∈ Θ(𝑔(𝑥)). Let also 𝑓_2 be asymptotically negative and 𝑓_2(𝑥) ∈
𝜔(𝑔(𝑥)). Then 𝑓_1(𝑋) + 𝑓_2(𝑥) ∈ Θ(𝑔(𝑥)).
Proof. This follows directly from Lemma 69.

3.7 Multiplicativity
Lemma 114. Let 𝑓_1 and 𝑓_2 be asymptotically nonnegative functions such that 𝑓_1(𝑥) ∈
𝑂(𝑔_1(𝑥)) and 𝑓_2(𝑥) ∈ 𝑂(𝑔_2(𝑥)). Then 𝑓_1(𝑥) ∗ 𝑓_2(𝑥) ∈ 𝑂(𝑔_1(𝑥) ∗ 𝑔_2(𝑥)).
Proof. This follows directly from Lemma 70.

Lemma 115. Let 𝑓_1 and 𝑓_2 be asymptotically nonpositive functions such that 𝑓_1(𝑥) ∈
Ω(𝑔_1(𝑥)) and 𝑓_2(𝑥) ∈ Ω(𝑔_2(𝑥). Then 𝑓_1(𝑥) ∗ 𝑓_2(𝑥) ∈ Ω(𝑔_1(𝑥) ∗ 𝑔_2(𝑥)).
Proof. This follows directly from Lemma 71.
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Chapter 4

Geometric sums

Before we finally state and prove the Master theorem, we need to prove two basic properties re-
garding geometric sums. These are both straightforward proofs with no clever tricks or surprises,
but are still stated for the sake of completeness.
Definition 116. Let 𝑥 ∈ ℝ and 𝑛 ∈ ℕ. A geometric sum is a sum of the form

𝑛
∑
𝑘=0

𝑥𝑘.

Proposition 117. Let 𝑥 ≠ 1 and 𝑛 ∈ ℕ. Then the following inequality holds:
𝑛

∑
𝑘=0

𝑥𝑘 ≤ 𝑥𝑛+1 − 1
𝑥 − 1

Proof. We prove the proposition by induction on 𝑛. The base case is simple:

𝑥0+1 − 1
𝑥 − 1 =

= 𝑥1 − 1
𝑥 − 1

= 𝑥 − 1
𝑥 − 1

= 1
= 𝑥0

The inductive step is also straightforward:
𝑛

∑
𝑘=0

𝑥𝑘 =
𝑛−1
∑
𝑘=0

𝑥𝑘 + 𝑥𝑛

= 𝑥𝑛 − 1
𝑥 − 1 + 𝑥 − 1

𝑥 − 1𝑥𝑛

= 𝑥𝑛 − 1
𝑥 − 1 + 𝑥𝑛+1 − 𝑥𝑛

𝑥 − 1
= 𝑥𝑛+1 − 1

𝑥 − 1
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Proposition 118. Let 0 < 𝑥 < 1 and 𝑛 ∈ ℕ. Then the following inequality holds:
𝑛

∑
𝑘=0

𝑥𝑘 ≤ 1
1 − 𝑥

Proof. The inequality follows directly from the previous proposition and the restriction on values
of 𝑥:

𝑛
∑
𝑘=0

𝑥𝑘 = 𝑥𝑛+1 − 1
𝑥 − 1

= 1 − 𝑥𝑛+1

1 − 𝑥
≤ 1 − 𝑥𝑛+1

1 − 𝑥
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Chapter 5

The Master theorem

Analyzing the time complexity of algorithms, especially recursive ones, is more often than not a
non-trivial task. For a recursive algorithm, its time complexity can be written as a recurrence
formula, which is generally not easy, sometimes even impossible to solve with a closed formula.
In some cases, though, we can find asymptotic bounds of the solution, despite not being able to
necessarily find the precise solution to the recurrence. One large class of such cases is the class
of divide-and-conquer algorithms, i.e. algorithms that recursively split the problem into smaller,
similarly-sized subproblems. The Master theorem puts asymptotic bounds on divide-and-conquer
recurrences.

Theorem 119 (Master theorem for divide-and-conquer recurrences). Let 𝑇 𝑓 ∶ ℕ → ℕ be func-
tions such that the recurrence

𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏) + 𝑓(𝑛)
holds for some 𝑎 > 0 and 𝑏 > 1. Let also 𝑓(𝑛) ∈ Θ(𝑛𝑑) for some 𝑑 ≥ 1. Then the following
holds:

1. if 𝑎 < 𝑏𝑑, then 𝑇 (𝑛) ∈ Θ(𝑛𝑑),
2. if 𝑎 = 𝑏𝑑, then 𝑇 (𝑛) ∈ Θ(𝑛𝑑 log𝑏 𝑛) and

3. if 𝑎 > 𝑏𝑑, then 𝑇 (𝑛) ∈ Θ(𝑛log𝑏 𝑎).
In the case where 𝑓 is bounded above by 𝑛𝑑 only above or only below, 𝑇 is also bounded only
above or only below by the respective function.

We prove this theorem by proving all of its cases separately.

Definition 120. Let 𝑇 𝑓 ∶ ℕ → ℕ be functions such that 𝑇 is monotone and the recurrence

𝑇 (𝑛) ≤ 𝑎𝑇 (⌈𝑛/𝑏⌉) + 𝑓(𝑛)

holds for all 𝑛 ≥ 𝑛_0 for some 𝑎 > 0, 𝑛_0 > 1 and 𝑏 > 𝑛_0. Let also 𝑓(𝑛) ∈ 𝑂(𝑛𝑑) for some
𝑑 ≥ 1. The above recurrence is an upper master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑).
Definition 121. Let 𝑇 𝑓 ∶ ℕ → ℕ be functions such that 𝑇 is monotone and the recurrence

𝑇 (𝑛) ≥ 𝑎𝑇 (⌊𝑛/𝑏⌋) + 𝑓(𝑛)

holds for all 𝑛 ≥ 𝑛_0 for some 𝑎 > 0, 𝑛_0 > 1 and 𝑏 > 𝑛_0. Let also 𝑓(𝑛) ∈ Ω(𝑛𝑑) for some
𝑑 ≥ 1. The above recurrence is a lower master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑).
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Lemma 122. Let 𝑇 and 𝑓 form a lower master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑). Then
𝑇 (𝑛) ∈ 𝑂(𝑛log𝑏 𝑎 + ∑⌊log𝑏 𝑛⌋

𝑘=0 ( 𝑎
𝑏𝑑 )𝑘𝑛𝑑).

Proof. To eliminate ceilings in the recurrence, we substitute 𝑇 (𝑛) with 𝑆(𝑛) = 𝑇 (𝑛 + 𝑏). Since
𝑇 is monotone, 𝑇 (𝑛) ≤ 𝑆(𝑛) = 𝑇 (𝑛 + 𝑏) holds for all 𝑛. Therefore, an upper bound on 𝑆 is also
an upper bound on 𝑇 . We must first show that 𝑆 follows the recurrence of 𝑇 without ceilings.
By the assumption that 𝑏 is a natural number such that 𝑏 > 1, we have the inequality

⌈𝑛 + 𝑏
𝑏 ⌉ ≤ 𝑛 + 𝑏

𝑏 + 1

= 𝑛
𝑏 + 2

≤ 𝑛
𝑏 + 𝑏.

Therefore, by monotonicity of 𝑇 we have

𝑆(𝑛) = 𝑇 (𝑛 + 𝑏)
≤ 𝑎𝑇 (𝑛

𝑏 + 𝑏) + 𝑓(𝑛 + 𝑏)

= 𝑎𝑆(𝑛
𝑏 ) + 𝑓(𝑛 + 𝑏),

which captures the wanted recurrence. Integer division here is defined as the floor of real-number
division. By substituting the inequality into itself repeatedly, we get

𝑆(𝑛) ≤ 𝑎𝑆(𝑛
𝑏 ) + 𝑓(𝑛 + 𝑏) (5.1)

≤ 𝑎𝑆(𝑛
𝑏 ) + 𝐶𝑛𝑑 (5.2)

≤ 𝑎2𝑆( 𝑛
𝑏2 ) + 𝐶𝑛𝑑 + 𝐶 𝑎

𝑏𝑑 𝑛𝑑 (5.3)

≤ 𝑎3𝑆( 𝑛
𝑏3 ) + 𝐶(1 + 𝑎

𝑏𝑑 + ( 𝑎
𝑏𝑑 )2)𝑛𝑑 (5.4)

≤ … (5.5)

≤ 𝑎𝑘𝑆( 𝑛
𝑏𝑘 ) + 𝐶

𝑘
∑
𝑖=0

( 𝑎
𝑏𝑑 )𝑖𝑛𝑑 (5.6)

(5.7)

Let 𝑁 be the integer such that for all 𝑛 ≥ 𝑁 ≥ 𝑛_0, the inequality 𝑓(𝑛) ≤ 𝐶𝑛𝑑 holds. Such
𝑁 exists because 𝑓(𝑛) ∈ 𝑂(𝑛𝑑). We set 𝑘 = ⌊log𝑏

𝑛
𝑁 ⌋. This choice of 𝑘 allows the inequality

𝑛 ≥ 𝑁 ∗ 𝑏𝑘 to hold for large enough 𝑛.
Consider both sum parts on the right side of the Equation 5.1. For the first part, we notice

that 𝑛log𝑏 𝑎 = 𝑎log𝑏 𝑛. Expand 𝑘 in the exponent and apply monotonicity:

𝑎𝑘 = 𝑎⌊log𝑏
𝑛
𝑁 ⌋

≤ 𝑎log𝑏
𝑛
𝑁

≤ 𝑎log𝑏 𝑛

This implies 𝑎𝑘 ∈ 𝑂(𝑛log𝑏 𝑎). We also need 𝑆( 𝑛
𝑏𝑘 ) to be bounded by a constant. We show that

𝑆( 𝑛
𝑏𝑘 ) ≤ 𝑆(𝑁 ∗ 𝑏). Since 𝑆 is monotone, this is equivalent to showing 𝑛

𝑏𝑘 ≤ 𝑁 ∗ 𝑏. We rewrite the
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left side as
𝑛
𝑏𝑘 = 𝑛

𝑏⌊log𝑏
𝑛
𝑁 ⌋

= 𝑛
𝑏⌊log𝑏 𝑛−log𝑏 𝑁⌋

= 𝑏log𝑏 𝑛

𝑏⌊log𝑏 𝑛−log𝑏 𝑁⌋

= 𝑏log𝑏 𝑛−⌊log𝑏 𝑛−log𝑏 𝑁⌋

Then, rewrite the right side as 𝑁 ∗ 𝑏 = 𝑏log𝑏 𝑁+1. With both sides written as exponents of 𝑏, we
only need to prove

log𝑏 𝑛 − ⌊log𝑏 𝑛 − log𝑏 𝑁⌋ ≤ log𝑏 𝑁 + 1.
By swapping terms, we get

log𝑏 𝑛 − log𝑏 𝑁 ≤ ⌊log𝑏 𝑛 − log𝑏 𝑁⌋ + 1,

which holds for all real numbers.
For the second part, the inequality 𝑘 ≤ ⌊log𝑏 𝑛⌋ holds by monotonicity of logarithms. As

geometric sums are monotone in the exponent, we get ∑𝑘
𝑖=0( 𝑎

𝑏𝑑 )𝑖𝑛𝑑 ∈ 𝑂(∑⌊log𝑏 𝑛⌋
𝑖=0 ( 𝑎

𝑏𝑑 )𝑖𝑛𝑑).
Theorem 123. Let 𝑇 and 𝑓 form a lower master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑),
where 𝑎 < 𝑏𝑑. Then 𝑇 (𝑛) ∈ 𝑂(𝑛𝑑).
Proof. First, we apply Lemma 122. Since 𝑎 < 𝑏𝑑, we have 𝑎

𝑏𝑑 < 1. By basic properties of
geometric sums, we get

𝑇 (𝑛) ≤
⌊log𝑏 𝑛⌋

∑
𝑖=0

( 𝑎
𝑏𝑑 )𝑖𝑛𝑑

≤ 1
1 − 𝑎

𝑏𝑑
𝑛𝑑,

which proves the upper bound.

Theorem 124. Let 𝑇 and 𝑓 form an upper master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑),
where 𝑎 = 𝑏𝑑. Then 𝑇 (𝑛) ∈ 𝑂(𝑛𝑑 log𝑏 𝑛).
Proof. After applying Lemma 122, we note that log𝑏 𝑎 = 𝑑 and then the proof boils down to
showing that the geometric sum is bounded by log𝑏 𝑛. Since 𝑎

𝑏𝑑 = 1, the geometric sum equals
⌊log𝑏 𝑛⌋, which is obviously bounded by log𝑏 𝑛.

Theorem 125. Let 𝑇 and 𝑓 form an upper master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑),
where 𝑎 > 𝑏𝑑. Then 𝑇 (𝑛) ∈ 𝑂(𝑛log𝑏 𝑎).
Proof. After applying Lemma 122, the left side of the sum if trivially bounded by 𝑛log𝑏 𝑎. We
are left with the right summand, which we transform using an inequality involving the geometric
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sum:
⌊log𝑏 𝑛⌋

∑
𝑘=0

( 𝑎
𝑏𝑑 )𝑘𝑛𝑑 ≤ 1

𝑎
𝑏𝑑 − 1(( 𝑎

𝑏𝑑 )⌊log𝑏 𝑛⌋ − 1)𝑛𝑑

≤ 1
𝑎
𝑏𝑑 − 1(( 𝑎

𝑏𝑑 )log𝑏 𝑛 − 1)𝑛𝑑

= 1
𝑎
𝑏𝑑 − 1(𝑏log𝑏

𝑎
𝑏𝑑 )log𝑏 𝑛𝑛𝑑

= 1
𝑎
𝑏𝑑 − 1(𝑏log𝑏 𝑛)log𝑏

𝑎
𝑏𝑑 𝑛𝑑

= 1
𝑎
𝑏𝑑 − 1𝑛log𝑏 𝑎−𝑑𝑛𝑑

= 1
𝑎
𝑏𝑑 − 1

𝑛log𝑏 𝑎

𝑛𝑑 𝑛𝑑

= 1
𝑎
𝑏𝑑 − 1𝑛log𝑏 𝑎

Since 𝑎 > 𝑏𝑑, 𝑎
𝑏𝑑 > 1 holds, so 1

𝑎
𝑏𝑑 −1 > 0, which proves boundedness by 𝑛log𝑏 𝑎.

Lemma 126. Let 𝑇 and 𝑓 form an upper master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑). Then
𝑇 (𝑛) ∈ Ω(∑⌊log𝑏 𝑛⌋

𝑘=0 ( 𝑎
𝑏𝑑 )𝑘𝑛𝑑).

Proof. We consider the recurrence formula with ceilings replaced by floors. If the resulting
inequality holds, then so does the master recurrence, so it suffices to prove the lower bound for
this inequality.

By substituting the inequality into itself repeatedly, we get

𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛
𝑏 ) + 𝑓(𝑛 + 𝑏) (5.8)

≤ 𝑎𝑇 (𝑛
𝑏 ) + 𝐶𝑛𝑑 (5.9)

≤ 𝑎2𝑇 ( 𝑛
𝑏2 ) + 𝐶𝑛𝑑 + 𝐶 𝑎

𝑏𝑑 𝑛𝑑 (5.10)

≤ 𝑎3𝑇 ( 𝑛
𝑏3 ) + 𝐶(1 + 𝑎

𝑏𝑑 + ( 𝑎
𝑏𝑑 )2)𝑛𝑑 (5.11)

≤ … (5.12)

≤ 𝑎𝑘𝑇 ( 𝑛
𝑏𝑘 ) + 𝐶

𝑘
∑
𝑖=0

( 𝑎
𝑏𝑑 )𝑖𝑛𝑑 (5.13)

(5.14)

We set 𝑘 = ⌊log𝑏 𝑛⌋. This choice of 𝑘 allows the inequality 𝑛 ≥ 𝑏𝑘 to hold for large enough 𝑛.
Here 𝐶 is a positive constant such that 𝑓(𝑛) ≥ 𝐶𝑛𝑑 for all 𝑛 ≥ 𝑛_0. Such a constant exists,
because 𝑓(𝑛) ∈ Ω(𝑛𝑑) implies 𝑓(𝑛) ≥ 𝐶_0𝑛𝑑 for some 𝐶_0 > 0 for all 𝑛 ≥ 𝑁 for some 𝑁 . For
𝑛_0 ≤ 𝑛 ≤ 𝑁 , The argument is as follows. The set of natural numbers between 𝑛_0 and 𝑁 is
finite, so the image of 𝑓 on this set has a maximal element 𝑀 . We then have 𝑓(𝑛) ≥ 𝑀

𝑁𝑑 𝑛𝑑.
The second summand in the right side of Equation 5.8 is trivially bounded above by ∑⌊log𝑏 𝑛⌋

𝑘=0 ( 𝑎
𝑏𝑑 )𝑘𝑛𝑑.

This is sufficient to prove the upper bound od 𝑇 (𝑛) as the left summand is non-negative.
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Lemma 127. Let 𝑇 and 𝑓 form a lower master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑). Then
𝑇 (𝑛) ∈ Ω(𝑛𝑑).
Proof. Since 𝑇 (𝑛) ≥ 𝑓(𝑛) for all 𝑛 ≥ 𝑛_0, the lower bound follows directly from 𝑓(𝑛) ∈ Ω(𝑛𝑑).

Theorem 128. Let 𝑇 and 𝑓 form a lower master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑) where
𝑎 = 𝑏𝑑. Then 𝑇 (𝑛) ∈ Ω(𝑛𝑑 log𝑏 𝑛).

Proof. By Lemma 126, it suffices to show that ∑⌊log𝑏 𝑛⌋
𝑖=0 ( 𝑎

𝑏𝑑 )𝑖 ∈ Ω(log𝑏 𝑛). Applying equality
𝑎 = 𝑏𝑑, the sum simplifies to

⌊log𝑏 𝑛⌋
∑
𝑖=0

( 𝑎
𝑏𝑑 )𝑖 =

⌊log𝑏 𝑛⌋
∑
𝑖=0

1𝑖 = ⌊log𝑏 𝑛⌋.

Theorem 129. Let 𝑇 and 𝑓 form an upper master recurrence with parameters (𝑎, 𝑛_0, 𝑏, 𝑑)
where 𝑎 > 𝑏𝑑. Then 𝑇 (𝑛) ∈ Ω(𝑛log𝑏 𝑎).

Proof. By Lemma 126, we need to show that ∑⌊log𝑏 𝑛⌋
𝑖=0 ( 𝑎

𝑏𝑑 )𝑖𝑛𝑑 ∈ Ω(𝑛log𝑏 𝑎). By 𝑎 > 𝑏𝑑, we have

⌊log𝑏 𝑛⌋
∑
𝑖=0

( 𝑎
𝑏𝑑 )𝑖𝑛𝑑 ≥ (𝑎𝑏−𝑑 − 1)−1((𝑎𝑏−𝑑)⌊log𝑏 𝑛⌋ − 1)𝑛𝑑

≥ 2−1(𝑎𝑏−𝑑 − 1)−1(𝑎𝑏−𝑑)⌊log𝑏 𝑛⌋𝑛𝑑

≥ 2−1(𝑎𝑏−𝑑 − 1)−1(𝑎𝑏−𝑑)log𝑏 𝑛−1𝑛𝑑

≥ 2−1𝑎−1𝑏𝑑(𝑎𝑏−𝑑 − 1)−1𝑎log𝑏 𝑛(𝑏log𝑏 𝑛−1)−𝑑𝑛𝑑

≥ 2−1𝑎−1𝑏𝑑(𝑎𝑏−𝑑 − 1)−1𝑛log𝑏 𝑎𝑛−𝑑𝑛𝑑

≥ 2−1𝑎−1𝑏𝑑(𝑎𝑏−𝑑 − 1)−1𝑛log𝑏 𝑎,

which proves the bound.

Corollary 130. Let 𝑇 and 𝑓 form an upper and lower master recurrence with parameters
(𝑎, 𝑛_0, 𝑏, 𝑑) where 𝑎 < 𝑏𝑑. Then 𝑇 (𝑛) ∈ Θ(𝑛𝑑).
Proof. By Theorem 79, it suffices to show lower and upper bounds for 𝑇 , which we already
proved in Theorem 123 and Lemma 127.

Corollary 131. Let 𝑇 and 𝑓 form an upper and lower master recurrence with parameters
(𝑎, 𝑛_0, 𝑏, 𝑑) where 𝑎 = 𝑏𝑑. Then 𝑇 (𝑛) ∈ Θ(𝑛𝑑 log𝑏 𝑎).
Proof. By Theorem 79, it suffices to show lower and upper bounds for 𝑇 , which we already
proved in Theorems 124 and 128.

Corollary 132. Let 𝑇 and 𝑓 form an upper and lower master recurrence with parameters
(𝑎, 𝑛_0, 𝑏, 𝑑) where 𝑎 > 𝑏𝑑. Then 𝑇 (𝑛) ∈ Θ(𝑛log𝑏 𝑛).
Proof. By Theorem 79, it suffices to show lower and upper bounds for 𝑇 , which we already
proved in Theorems 125 and 129.
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